
SVB Documentation
Release 0.0.1

Martin Craig

Mar 03, 2021

Contents:

1 Stochastic Variational Bayes - Theory 2

2 Implementation of SVB 5

3 Tests using Biexponential model 11

4 Tests using Arterial Spin Labelling model 47

5 Sample size inflation tests 50

6 Learning rate quenching tests 55

7 Command line usage 61

8 Python API 62

Python Module Index 72

Index 73

i

SVB Documentation, Release 0.0.1

SVB is a package to perform stochastic Bayesian inference on a nonlinear forward model (i.e. a parameterised model
which is able to predict data values from a set of parameter values).

The implementation leverages the TensorFlow framework to perform efficient optimisation of the model parameters
given an experimental data set.

Contents: 1

CHAPTER 1

Stochastic Variational Bayes - Theory

Stochastic Variational Bayes is a method of performing Bayesian inference on the parameters of a generative model
given a data set assumed to be generated by the model with unknown additive noise.

The description below is a highly abbreviated account of the theory behind SVB. For more detailed derivations, see
the references cited.

For interactive tutorials implementing variational Bayesian inference on simple examples, see the Variational Bayes
tutorial

1.1 Bayesian inference

Bayes’ theorem is a general statement about how ones belief about the value distribution of a random variable should
be updated in the light of new data. In the context of model parameter inference it can be described as follows:

𝑝(𝜃 | 𝑦) = 𝑞(𝜃) =
𝑝(𝑦 | 𝜃) 𝑝(𝜃)

𝑝(𝑦)

Here 𝜃 is the set of parameters of the model which we wish to infer.

𝑝(𝜃 | 𝑦) = 𝑞(𝜃) is the posterior distribution, i.e. the inferred distribution of the model parameters 𝜃 given the data 𝑦.

𝑝(𝜃) is the prior probability of the model parameters 𝜃. This describes the distribution we believe the parameters would
follow before any data has been seen and might reflect, for example, existing estimates of physiological parameters or
other constraints (e.g. that a fractional parameter must lie between 0 and 1).

𝑝(𝑦 | 𝜃) is the likelihood, i.e. the probability of getting the data 𝑦 from a given set of model parameters 𝜃. This is
determined by evaluating the model prediction using the parameters 𝜃 and comparing it to the data. The difference
between the two must be the result of noise, and the likelihood of the noise can be calculated from the noise model.

𝑝(𝑦) is the evidence and is chiefly used when comparing one model with another. For an inference problem using a
single model it can be neglected as it is independent of the parameters and simply provides a normalizing constant.

2

https://vb-tutorial.readthedocs.io
https://vb-tutorial.readthedocs.io

SVB Documentation, Release 0.0.1

1.2 Variational Bayes

The general Bayesian inference problem can, in general, only be solved by a sampling method such as Markov Chain
Monte Carlo (MCMC) where random samples are generated in such a way that, through Bayes’ theorem, they grad-
ually provide a representative sample of the posterior distribution. Any properties of the posterior, such as mean and
variance, can be calculated from the sample once it is large enough to be representative.

MCMC, however, is extremely computationally intensive especially for the kind of applications we are concerned with
where we may be fitting between 2 and 20 parameters independently at typically 105 voxels. Variational Bayes is an
approximate method which re-formulates the inference problem in the form of a variational principle, where we seek
to maximise the Free Energy.

𝐹 (𝜃) =

∫︁
𝑞(𝜃) log

(︂
𝑝(𝑦 | 𝜃)

𝑝(𝜃)

𝑞(𝜃)

)︂
𝑑𝜃

Again 𝜃 is the set of model parameters, 𝑞(𝜃) is the posterior distribution, 𝑝(𝜃) is the prior distribution and 𝑝(𝑦 | 𝜃) is
the likelihood of the data given the parameters.

For completely general forms of the prior and posterior distributions, this integral is expensive to compute numerically
(and is unlikely to be solvable analytically). However the advantage of the variational approach is that simplified forms
can be chosen for the prior and posterior such that the free energy can be calculated and optimized efficiently. The
variational principle guarantees that the free energy calculated using this method will be a lower bound on the ‘true’
free energy and therefore the closest approximation we can find using our simplified distributions.

Typically we assume multivariate Gaussian distributions for the prior and posterior, and a noise model based on a
Gaussian or Gamma distribution.

One form of variational Bayes uses the calculus of variations to derive a set of update equations for the model and
noise parameters which can then be iterated until convergence1. However this method requires particular choices of
the prior and posterior distributions, and the noise model, and thus lacks flexibility. Any change to these distributions
requires the update equations to be re-derived.

1.3 Stochastic variational Bayes

The free energy equation can be slightly re-written in the form of an expectation over the posterior distribution 𝑞(𝜃):

𝐹 (𝜃) = 𝐸𝑞(𝜃)

[︀
log(𝑝(𝑦 | 𝜃)

]︀
− 𝐸𝑞(𝜃)

[︂
log

(︁𝑞(𝜃)

𝑝(𝜃)

)︁]︂
This suggests an alternative calculation method based on taking a sample of values from the posterior distribution.
If this sample is large enough to be representative of the distribution, the expectation integrals from above can be
approximated by the mean over the samples:

𝐸𝑞(𝜃)

[︀
log(𝑝(𝑦 | 𝜃)

]︀
≈ 1

𝑆

∑︁
𝑠

log(𝑝(𝑦 | 𝜃𝑠)

𝐸𝑞(𝜃)

[︂
log

(︁𝑞(𝜃)

𝑝(𝜃)

)︁]︂
≈ 1

𝑆

∑︁
𝑠

[︂
log

(︁𝑞(𝜃𝑠)

𝑝(𝜃𝑠)

)︁]︂
Where we have 𝑆 samples of the full set of parameters, denoted 𝜃𝑠.

The first of these terms is the negative of the reconstruction loss and is a measure of how well the model prediction
fits the data.

1 Chappell, M.A., Groves, A.R., Woolrich, M.W., “Variational Bayesian inference for a non-linear forward model”, IEEE Trans. Sig. Proc.,
2009, 57(1), 223–236.

1.2. Variational Bayes 3

SVB Documentation, Release 0.0.1

The second term is the latent loss and measures the closeness of the posterior to the prior. In fact it is the Kullback-
Leibler (KL) divergence between the prior and posterior distributions.

This is more tractable than a numerical integration provided we can obtain a representative sample from the posterior.
Maximisation of the free energy can then be done using a generic framework such as those developed for machine
learning applications which have the ability to automatically calculate gradients of an objective function from a defined
set of calculation steps.

1.3.1 Alternative forms of the latent loss

The latent loss term can be alternatively written as follows, removing the stochastic approximation for part of the log:

𝐸𝑞(𝜃)

[︂
log

(︁𝑞(𝜃)

𝑝(𝜃)

)︁]︂
≈ 𝐸𝑞(𝜃)

[︂
log(𝑞(𝜃))

]︂
− 1

𝑆

∑︁
𝑠

[︂
log(𝑝(𝜃𝑠))

]︂
The first term is the entropy of the posterior distribution. For many distributions this can be calculated analytically
without reference to a sample, so we may be able reduce our dependence on the choice of sample to some degree.

If both the prior and posterior are multivariate Gaussian distributions, we can go further and obtain a fully analytic
expression for the latent loss using the known result for the KL divergence of two MVNs2:

𝐸𝑞(𝜃)

[︂
log

(︁𝑞(𝜃)

𝑝(𝜃)

)︁]︂
=

1

2

{︂
Tr(Σ−1

𝑝 Σ𝑞) + (𝜇𝑝 − 𝜇𝑞)𝑇 Σ−1
𝑝 (𝜇𝑝 − 𝜇𝑞) −𝑁 + log

(︂
det Σ𝑝

det Σ𝑞

)︂}︂
Here 𝑁 is the number of parameters in 𝜃, and 𝜇𝑝,Σ𝑝, 𝜇𝑞,Σ𝑞 are the mean and covariance of the prior and posterior.

1.3.2 Obtaining the sample from the posterior

The problem of sampling from the posterior is of some significance. If the optimization is to work effectively it would
be helpful if the gradients of the sample values with respect to the variable parameters could be calculated. However
this is difficult if we simply obtain a random sample from, for example, a Gaussian of given mean and variance. For
Gaussian distributions, one way around this is known as the reparameterization trick. We obtain a sample from a fixed
Gaussian (e.g. 𝑁(0, 1)) and then scale the values using the (variable) mean and variance of the posterior distribution.
This enables the gradients to be used in the optimization algorithm. The disadvantage of the method is that it does not
immediately generalise to other kinds of distributions.

1.3.3 Advantages of the stochastic approach

The main advantage of the stochastic approach is that the requirements on the prior and posterior distributions are
greatly reduced. The prior distribution needs to be able to generate log probabilities for a set of parameters, the
posterior needs to be able to generate samples and its own entropy, and we need some means of calculating the
data likelihood - this normally involves a noise model which can calculate the probability of the observed deviations
between a model prediction and the actual data. Although we can take advantage of analytic results for Gaussian
distribution, the actual forms of the distributions are not constrained by the method (apart from the limitation of not
always being able to use the reparameterization trick).

1.4 References

2 http://web.stanford.edu/~jduchi/projects/general_notes.pdf

1.4. References 4

http://web.stanford.edu/~jduchi/projects/general_notes.pdf

CHAPTER 2

Implementation of SVB

2.1 Use of TensorFlow

The maximisation of the free energy with respect to the parameters of the posterior distribution is implemented using
the TensorFlow library which provides efficient calculation of functions of multidimensional arrays.

TensorFlow uses a compiled-graph model where the elements in a calculation are represented as nodes of a graph and
dependencies are represented as edges. The graph is set up prior to the actual calculation being performed. In this
model, nodes are tensors (multidimensional arrays) or operations which take one or more tensors and output one or
more tensor outputs. For example a matrix multiplication operation would take two tensors and output one.

For operations such as these, TensorFlow is designed to operate efficiently on large batches of data, so for example a
tensor with dimensions [1000, 5, 10] can be interpreted as 1000 instances of a 5x10 matrix. This can then be
matrix-multiplied by another tensor of dimensions [1000, 10, 8] resulting in an output with the same dimensions
of [1000, 5, 8] interpreted as the 1000 output matrix products. This system is well suited to our problem where
we will be performing calculations on around 105 voxels simultaneously.

Operations can also reduce the dimensions of a tensor, for example by calculating the sum or mean across an axis,
or all axes, reshape tensors (transpose axes), extract subsets of tensors and perform mathematical operations such as
elementwise log, square, etc.

Tensors which are not the output of an operation may be set to some constant value, however they may also be marked
as variables. When elements of a tensor are marked as variable they can be changed by an optimization operation in
order to minimise some cost function, defined by a set of operations on the tensors in the graph. In our case since we
seek to maximise the free energy we take the cost function as its negative.

Optimizer operations work by calculating the gradient of the cost function with respect to all variables (using the back-
propogation technique) and performing a gradient-based minimisation algorithm. This minimisation can be carried
out iteratively until the cost function is determined to have converged to some predefined extent.

Variables and constant values can be freely mixed in a calculation, for example one can construct a matrix in which
the diagonal elements are variable but the off-diagonal elements are fixed constants.

5

SVB Documentation, Release 0.0.1

2.2 Main elements in the calculation graph

The elements in the calculation graph are implemented as Python classes which, contain methods to set up the relevant
tensors and operations required to perform their function. We try to avoid assumptions about the nature of these
operations in order to increase flexibility, e.g. we do not constrain how the posterior generates samples of values.

In TensorFlow, keeping track of the dimensions of tensors is critical to error-free execution! In the following sections
we use the following symbols to maintain clarity:

• V is the number of voxels.

• B is the number of time points in each voxel during optimization.

• S is the number of samples drawn from the posterior in order to approximate integrals over the posterior in the
stochastic method.

• P is the number of parameters in the generative model, including any parameters required to model (including
any parameters needed to model the noise component).

Note: For clarity with our intended application to modelling timeseries of volumetric data, we refer to voxels and
time points. However more generally voxels can be thought of as independent instances of the data being modelled,
and time points could be any kind of series of data values.

Note: B may not be the full set of time points available in the data - see Mini-batch processing below.

2.2.1 Prior

In the stochastic variational Bayes method, we need to be able to integrate the expected log PDF of the prior distribution
over the posterior, and this is calculated using a (random, but hopefully representative) sample of values from the
current posterior.

A prior must therefore provide an operation node which takes a sample tensor of dimension [V, P, S] and returns
a tensor of dimensions [V] which contains the mean log PDF for each voxel.

def mean_log_pdf(self, samples):
"""
:param samples: A tensor of shape [V, P, S] where V is the number

of voxels, P is the number of parameters in the prior
(possibly 1) and S is the number of samples

:return: A tensor of shape [V] where V is the number of voxels
containing the mean log PDF of the parameter samples
provided

"""

2.2.2 Posterior

The posterior must be able to provide samples from itself, i.e. it must provide an operation node which takes a sample
size parameter, S and returns a tensor of dimension [V, P, S] which returns S samples for each of P parameters at
each of V voxels.

2.2. Main elements in the calculation graph 6

SVB Documentation, Release 0.0.1

def sample(self, nsamples):
"""
:param nsamples: Number of samples to return per voxel / parameter

:return: A tensor of shape [V, P, S]`` where V is the number
of voxels, P is the number of parameters in the distribution
(possibly 1) and S is the number of samples

"""

In addition the posterior must be able to calculate the expectation integral of the log PDF over its own distribution.
This is by definition the entropy of the distribution and therefore in many cases it can be calculated without reference
to a sample. However the sample is available if it is required. This must provide an operation which returns a tensor
of dimension [V] containing the entropy at each voxel.

def entropy(self, samples):
"""
:param samples: A tensor of shape [V, P, S] where V is the number

of voxels, P is the number of parameters in the prior
(possibly 1) and S is the number of samples.
This parameter may or may not be used in the calculation.

:return Tensor of shape [V] containing voxelwise distribution entropy
"""

2.2.3 Generative model

The job of the model is to provide a predicted set of data points given a set of parameters. However in the stochastic
method it must provide a full prediction for each time point in the input data for each sample of parameter values
derived from the posterior.

Hence we require an operation which takes a tensor of dimension [P x V x S x 1] containing the values of the
parameters for each sample at each voxel and a tensor of dimension [V, 1, B] of time points at each voxel and
outputs a tensor of dimension [V, S, B] containing the model prediction at each time point for each sample at each
voxel.

def evaluate(self, params, t):
"""
Evaluate the model

:param t: Time values to evaluate the model at, supplied as a tensor of shape
[1x1xB] (if time values at each voxel are identical) or [Vx1xB]
otherwise.

:param params Sequence of parameter values arrays, one for each parameter.
Each array is VxSx1 tensor where V is the number of voxels and
S is the number of samples per parameter. This
may be supplied as a PxVxSx1 tensor where P is the number of
parameters.

:return: [VxSxB] tensor containing model output at the specified time values
for each voxel, and each sample (set of parameter values).

"""

Note: The dimensions of the sampled input parameter values are transposed from those returned by the posterior.
This is because it is more convenient for the model to have the parameter index first so individual parameter tensors

2.2. Main elements in the calculation graph 7

SVB Documentation, Release 0.0.1

can easily be extracted by indexing. This is helpful as different parameters typically play different roles in the model.

Note: The dimension of size 1 in the input parameter values is designed to align with the last dimension in the time
points tensor (of size B) to allow the parameter values to be broadcast across all time points. Similarly the dimension
of size 1 in the time points tensor allows the same set of time points to be broadcast across the sample dimension S.

Note: The time points may be identical at all voxels, in which case a time point tensor of shape [1, 1, B] may be
provided instead. This can typically be handled automatically by broadcasting.

2.2.4 Noise model

The noise model is required to calculate the mean log likelihood of the data over the sampled values, given the
prediction returned by the model. It must define an operation which takes the actual data tensor with dimensions [V,
B], the model prediction tensor [V, S, B] and the sampled values of the noise parameter [V, S]. The operation
must return a voxelwise mean log likelihood tensor with dimensions [V].

def log_likelihood(self, data, pred, noise, nt):
"""
Calculate the log-likelihood of the data

:param data: Tensor of shape [V, B]
:param pred: Model prediction tensor with shape [V, S, B]
:param noise: Noise parameter samples tensor with shape [V, S]
:return: Tensor of shape[V] containing mean log likelihood of the

data at each voxel with respect to the noise parameters
"""

Note: Currently we are assuming a single noise parameter. This will be relaxes in future and the input noise parameter
tensor will have dimension [V, S, Pn] where Pn is the number of noise parameters

2.2.5 Cost function

The total loss is defined by summing two loss tensors. The Reconstruction loss is the negative of the mean log
likelihood returned by the noise model. This is essentially a measure of how well the model prediction fits the data.
The Latent loss is the posterior distribution entropy minus the mean log PDF of the prior and penalises large deviations
from the prior values of the parameters. Each of these is defined by operations on the tensors returned by the prior,
posterior and noise models and has dimension [V].

Note: If both prior and posterior are multivariate Gaussian distributions an analytic expression for the latent loss
is available which does not require the use of a sample. In this case we use this instead of the calculation described
above, and an additional operation is defined in the MVN posterior for this.

The final cost function is then defined as a mean over voxels of the loss tensor, i.e. a scalar. This is to ensure that the
optimizer has a single value to optimize the parameters over.

2.2. Main elements in the calculation graph 8

SVB Documentation, Release 0.0.1

2.3 Optimization strategy

Optimization is performed using the AdamOptimizer, a gradient based optimization algorithm that seeks to min-
imise the given cost function. The key parameter in configuring the optimizer is the learning rate which determines
the size of the step in parameter space that the optimizer takes in order to reduce the cost function. High learning rates
move further and may therefore reduce the cost function more quickly, however they may also ‘overshoot’ the actual
minimum and fail to converge, or find a local minimum instead. Low learning rates by contrast move more cautiously
towards the minimum however the resulting convergence may be too slow to be useful.

Unfortunately there is no obvious way to select the optimal learning rate for a given problem. Typically in machine
learning applications a process of trial and error is involved, with learning curves used as a way to assess the conver-
gence. This is not too problematic as the training is often a one-off or occasional step with the trained model then
re-used for multiple applications. In our case, however, we need to train a model for each application (data set) we
process and the ability to select a suitable learning rate is critical. For this reason we will need to devote some effort
to identifying how to select this parameter for the kind of data we face.

Optimization is divided into Epochs, each of which involves the entire data set being processed and the parameters
and cost function updated. This can be done in a single iteration of the optimizer, passing all the data in, however it is
also possible to use a mini-batch method which can offer some advantages.

2.3.1 Mini-batch training

In mini-batch training, the data set is divided into chunks and an optimization step is performed for each chunk. When
all chunks have been processed an epoch is complete and we start the next epoch with the first chunk again.

There are two main potential advantages to mini-batch training:

1. Efficiency - the information contained in the data set does not scale linearly with the number of points included,
whereas the computational effort often does. Processing half of the data may take half as much time and yet
yield an optimization iteration nearly as effective as processing the full data. An epoch is then be comprised of
two optimization iterations rather then one. which should mean faster convergence by epochs.

2. Increasing noise - One danger of gradient based optimization is local minima. A way to reduce the likelihood
of the optimization getting stuck in one is to introduce an element of noise to the gradients so the optimization
will explore a wider range of parameter space during the minimization. Smaller batches of data will give noisier
gradients and may help alleviate this problem to some extent.

While this is persuasive it is important to recognize that assumptions about the efficiency of an optimization must be
tested in practice. Typical machine learning applications often have extremely large numbers of training examples and
often use mini-batch sizes of 20-50. In our case the number of time points in real data rarely exceeds 100 so it may be
the case that mini-batch training is only useful for larger data sets.

A mini-batch can be extracted from the data in two main ways, either by dividing up the data into sequential chunks
or by taking strided subsamples through the data. The latter seems more approprate when the data forms a continuous
timeseries since we are always using information from across the time series, however for the same reason the former
method may be preferred when our data consists of repeated blocks of measurements of the same timeseries (as is
sometimes the case for ASL data). Our implementation supports both via the sequential_batches parameter.

One factor that needs to be accounted for when doing mini-batch training is the scaling of different contributions to
the total cost. The latent loss depends only on the prior and posterior distributions and not on the size of the training
data, however the reconstruction loss is a sum of log probabilities over the points in the training data. Correct Bayesian
inference only occurs when this is scaled by 𝑁𝑡

𝑁𝑏
where 𝑁𝑡 is the number of time points in the full data and 𝑁𝑏 is the

number in the mini-batch, i.e. the batch is being used to estimate the reconstruction loss for the full data set.

2.3. Optimization strategy 9

SVB Documentation, Release 0.0.1

2.3.2 Learning rate quenching

There is no requirement to keep the learning rate constant throughout the optimization. It can, and often is, changed
after each epoch or training iteration. One simple strategy is to gradually reduce (‘quench’) the learning rate, starting
off with a high value that quickly explores the parameter space, and reducing it to home in on the minimum with high
accuracy. Currently we have a very simple implementation of this idea using the following parameters:

• max_trials If this number of epochs passes without the cost function improving over the previous best, the
learning rate will be reduced

• quench_rate - a factor to reduce the learning rate by (e.g. 0.5 means the learning rate will be halved)

• min_learning_rate - The learning rate will never be reduced lower than this value

This scheme gives us some freedom to start with relatively high learning rates and reduce them if they are not getting
us anywhere. We also adopt the same strategy where a numerical error is detected. Often this occurs when parameters
stray out of ‘reasonable’ ranges, suggesting an excessively large optimization step. In this case we reset to the previous
best cost state and reduce the learning rate by quench_rate and continue.

It is worth noting that this is far from being the only strategy for modifying learning rates during training, not is it an
agreed best practice! Other ideas include:

• Starting with a low learning rate and increasing it until the cost stops decreasing, thus determining an optimal
learning rate which is then selected.

• Cycling the learning rate to explore a varied region of parameter space and aid escape from local minima
(possibly combined with quenching over time)

• Increasing the batch size rather than the learning rate to reduce gradient noise as convergence is approached.

It remains to be seen if any of these strategies are useful in our application - again they are typically the product of
machine learning applications which, although they resemble our problem in some ways, differ greatly in others so
not all recommended strategies may be useful.

2.3.3 Voxelwise convergence

Our implementation seeks to minimise the mean cost over all voxels, however it is clear in practice that some voxels
converge more rapidly than others. If we can identify ‘converged’ voxels and exclude them from the calculation in
subsequent epochs we may attain overall convergence faster (or alternatively be able to use larger numbers of epochs
to ensure we converge ‘difficult’ voxels without penalising our runtime too much).

Two ways we might accomplish this are:

• A voxelwise mask which selects out a subset of the data for cost calculation. This would need to be applied at
an early stage in the calculation graph in order to save computational time.

• ‘Zeroing’ the gradients of converged voxels so they do not contribute to the minimisation.

We have not attempted to implement these strategies yet because currently we want to understand convergence gen-
erally and are less concerned with absolute performance. However this would be useful to investigate as we start to
apply the method to real examples.

2.3. Optimization strategy 10

CHAPTER 3

Tests using Biexponential model

The biexponential model outputs a sum of exponentials:

𝑀(𝑡) = 𝐴1 exp (−𝑅1𝑡) + 𝐴2 exp (−𝑅2𝑡)

The model parameters are the amplitudes 𝐴1, 𝐴2 and the decay rates 𝑅1 and 𝑅2.

Although the model is straightforward it can be challenging as an inference problem as the effect of the two decay
rates on the output is nonlinear and can be difficult to distinguish in the presence of noise.

3.1 Test data

For testing purposes we define the ground truth parameters as:

• 𝐴1 = 10

• 𝐴2 = 10

• 𝑅1 = 1

• 𝑅2 = 10

The variables within the test data are:

• The level of noise present. For this test data we use Gaussian noise with a standard deviation of 1.0.

• The number of time points generated. We generate data sets with 10, 20, 50 and 100 time points (in each case
the value of 𝑡 ranges from 0 to 5 so only the data resolution changes in each case)

An example timeseries with these parameters is show below (100 time points, ground truth overlaid on noisy data):

11

SVB Documentation, Release 0.0.1

1000 timeseries instances were generated and used for each test.

One issue with the biexponential model is that there are always two equivalent solutions obtained by exchanging
𝐴1, 𝑅1 with 𝐴2, 𝑅2. To prevent this from confusing reports of mean parameter values, we normalize the results of
each run such that in each voxel 𝐴1, 𝑅1 is the exponential with the lower rate.

3.2 Test variables

The following variables were investigated

• The learning rate

• The size of the sample taken from the posterior when set independently of the batch size

• The batch size when using mini-batch processing (NB this cannot exceed the number of time points)

• The prior distribution of the parameter

• The initial posterior distribution of the parameters

• The use of the numerical (sample-based) calculation of the KL divergence on the posterior vs the analytic
solution (possible in this case only because both prior and posterior are represented by a multivariate normal
distribution).

• Whether covariance between parameters is modelled. The output posterior distribution can either be modelled
as a full multivariate Gaussian with covariance matrix, or we can constrain the covariance matrix to be diagonal
so there is no correlation between parameter values.

3.2. Test variables 12

SVB Documentation, Release 0.0.1

We investigate convergence by calculating the mean of the cost function across all test instances by epoch. Note that
this measure is not directly comparable when different priors are used as the closeness of the posterior to the prior is
part of the cost calculation. Convergence is plotted by runtime, rather than number of epochs for two reasons: Firstly
since this is the measure of most interest to the end user, and also because in the case of mini-batch processing one
epoch may represent multiple iterations of the optimization loop.

We also consider per-voxel speed of convergence, defined for each voxel as the epoch at which it first came within 5%
of its best cost. This definition is only useful when convergence was eventually achieved.

3.3 Effect of learning rate

The learning rate determines the size of optimization steps made by the gradient optimizer and can be a difficult
variable to select. Too high and the optimizer may repeatedly overshoot the minima and never actually converge, too
low and convergence may simply be too slow. In many machine learning problems the learning rate is determined by
trial and error however in our case we do not have this luxury as we need to be able to converge the model fitting on
any unseen data without user intervention.

The convergence of the mean cost is shown below by learning rate and number of time points. In these tests mini-batch
processing was not used, the analytic calculation of the KL divergence was used and the posterior sample size was
200.

3.3. Effect of learning rate 13

SVB Documentation, Release 0.0.1

3.3. Effect of learning rate 14

SVB Documentation, Release 0.0.1

Although the picture is rather messy some observations can be made:

• Excessively high learning rates are unstable and do not achieve the best cost across the data sets (a learning rate
of 1.0 was also tested but not plotted as the instability made the plots difficult to read).

• Very low learning rates (0.02 or lower) converge too slowly to be useful

• Even some learning rates which appear to show good smooth convergence do not achieve the minimum cost
(e.g. LR=0.25, the amber line on some plots)

• Convergence with covariance is much more challenging as would be expected since the total number of fitted
parameters rises from 10 to 20 per instance. In this high-dimensional space finding the overall cost minimum is
likely to be more difficult.

• A learning rate of 0.1 gives the fastest reliable convergence. We will use this learning rate in subsequent tests
where a single learning rate is required.

3.3. Effect of learning rate 15

SVB Documentation, Release 0.0.1

• Nevertheless initial convergnce can be faster at a higher learning rate (0.25 or 0.5) suggesting use of ‘quenching’
where the learning rate is decreased during the optimization.

We can also examine the best cost achieved at various learning rates including variation in the posterior sample size:

3.3. Effect of learning rate 16

SVB Documentation, Release 0.0.1

These plots reinforce that a learning rate of 0.1 seems optimal for attaining best cost across a range of tests although
there may be slight benefit to a higher rate when including covariance.

Increasing the posterior sample size leads to a gradual lowering of the best cost with little improvement beyond a size
of 50. Small sample sizes combined with high learning rates are problematic - at low learning rates the sample size
matters less. We will consider the sample size in more detail in a later section.

3.4 Effect of batch size and learning rate on best cost achieved

Optimization of the cost function proceeds by ‘epochs’ which consists of a single pass through all of the data. Batch
processing consists of dividing the data into smaller batches and performing multiple iterations of the optimization
- one for each batch - during an epoch. Processing the data in batch is a commonly used method to accelerate
convergence and works because updates to the parameters occurs multiple times during each epoch. The optimization

3.4. Effect of batch size and learning rate on best cost achieved 17

SVB Documentation, Release 0.0.1

steps are ‘noisier’ because they are based on less training samples and this helps to avoid converging onto local minima.
Of course if the batch size is too small the optimization may become so noisy that convergence does not occur at all.

3.4. Effect of batch size and learning rate on best cost achieved 18

SVB Documentation, Release 0.0.1

These plots show that mini-batch processing does indeed accelerate convergence especially where the number of data
points is high. Batch sizes of 10 and 20 produce consistently fast convergence compared to using the entire data set at
each epoch.

Since mini-batch processing increases gradient noise we might expect it to interact with the learning rate which we
can investigate by looking at the best cost achieved by learning rate at different batch sizes:

3.4. Effect of batch size and learning rate on best cost achieved 19

SVB Documentation, Release 0.0.1

3.4. Effect of batch size and learning rate on best cost achieved 20

SVB Documentation, Release 0.0.1

These results confirm the use of learning rates between 0.1 and 0.05 as optimal across batch sizes. In general small
batch sizes can be used with lower learning rates. Large batch sizes can reach a lower cost at higher learning rates,
although sometimes they are not able to converge at all. This is in line with expectations since high learning rates and
low batch sizes both imply a ‘noisier’ optimization and both excessively high or low noise in the optimization can be
problematic.

It is noticeable that batch sizes smaller than the number of points in the data only give faster convergence for larger
numbers of time points (50 or 100). However there is still an advantage to mini-batch processing in that the best cost
curves are ‘flatter’, i.e. more tolerant of variation in the learning rate.

Where batch size is fixed in subsequent tests we use a value of 10.

3.4. Effect of batch size and learning rate on best cost achieved 21

SVB Documentation, Release 0.0.1

3.5 Effect of posterior sample size

The sample size is used to esimate the integrals in the calculation of the cost function, so we would expect that a certain
minimum size would be required for a good result. The smaller the sample, the more the resulting cost gradients are
affected by the random sample selection which may lead to a noisier optimisation process that may not converge at all.
On the other hand, larger sample sizes will take longer to calculate the mean cost giving potentially slower real-time
convergence.

Here we vary the sample size with a fixed learning rate of 0.1 and initially without mini-batch processing:

3.5. Effect of posterior sample size 22

SVB Documentation, Release 0.0.1

This illustrates that very small sample sizes do indeed result in a noisy potentially non-convergent optimization, and
also that larger sample sizes can produce overall slower convergence. The picture is mixed, however the optimal
sample size is around 50 when inferring covariance but only 20 without covariance.

We can also look at the equivalent convergence when using mini-batch processing with a batch size of 10:

3.5. Effect of posterior sample size 23

SVB Documentation, Release 0.0.1

3.5. Effect of posterior sample size 24

SVB Documentation, Release 0.0.1

The results are essentially the same however the optimization becomes extremely unstable at small sample sizes when
combined with mini-batch processing.

Note also that it is possible that a lower sample size may constrain the free energy systematically (analogously to the
way in which numerical integration techniques may systematically under or over estimate depending on whether the
function is convex). So the higher free energy of smaller sample sizes does not necessarily mean that the posterior is
actually further from the best variational solution.

With this in mind it is useful to look at convergence in parameter values (using mini-batch processing as above):

3.5. Effect of posterior sample size 25

SVB Documentation, Release 0.0.1

3.5. Effect of posterior sample size 26

SVB Documentation, Release 0.0.1

3.5. Effect of posterior sample size 27

SVB Documentation, Release 0.0.1

3.5. Effect of posterior sample size 28

SVB Documentation, Release 0.0.1

3.5. Effect of posterior sample size 29

SVB Documentation, Release 0.0.1

3.5. Effect of posterior sample size 30

SVB Documentation, Release 0.0.1

3.5. Effect of posterior sample size 31

SVB Documentation, Release 0.0.1

3.5. Effect of posterior sample size 32

SVB Documentation, Release 0.0.1

Here we can see that firstly, with fewer data points the optimization tends to favour a single-exponential solution and
does not recover the biexponential property for most voxels until we have at NT=50.

In general there is little benefit to sample sizes above 50, and 20 gives very similar results for NT=50 and NT=100.

3.6 Effect of prior and initial posterior

The following combinations of prior and posterior were used. An informative prior was set with a mean equal to the
true parameter value and a standard deviation of 2.0. Non-informative priors were set with a mean of 1 and a standard
deviation of 1e6 for all parameters.

Non-informative initial posteriors were set equal to the non-informative prior. Informative posteriors were set with
a standard deviation of 2.0 and a mean which either matched or did not match the true parameter value as described

3.6. Effect of prior and initial posterior 33

SVB Documentation, Release 0.0.1

below. In addition, an option in the model enabled the initial posterior mean for the amplitude parameters to be
initialised from the data.

Code Description
i_i Informative prior, informative posterior initialised with mean values equal to 1.0 for all parameters
i_i_init Informative prior, informative posterior initialised with true values of the decay rates and with ampli-

tude initialised from the data
i_i_true Informative prior, informative posterior initialised with true values
i_i_wrongInformative prior, informative posterior initialised with mean values of 1.0 for the decay rate and 100.0

for the amplitudes (i.e. very far from the true values)
i_ni Informative prior, non-informative posterior
i_ni_initInformative prior, non-informative posterior with amplitude initialised from the data
ni_i Non-informative prior, informative posterior initialised with mean values equal to 1.0 for all parame-

ters
ni_i_initNon-informative prior, informative posterior initialised with true values of the decay rates and with

amplitude initialised from the data
ni_i_trueNon-informative prior, informative posterior initialised with true values
ni_i_wrongNon-informative prior, informative posterior initialised with mean values of 1.0 for the decay rate and

100.0 for the amplitudes (i.e. very far from the true values)
ni_ni Non-informative prior, non-informative posterior
ni_ni_initNon-informative prior, non-informative posterior with amplitude initialised from the data

3.6. Effect of prior and initial posterior 34

SVB Documentation, Release 0.0.1

3.6. Effect of prior and initial posterior 35

SVB Documentation, Release 0.0.1

These results show that in terms of absolute convergence there is no significant difference between the choice of prior
and posterior. Note that the absolute cost achieved can be different between the informative and non-informative priors
as expected. The exception is the cases where a non-informative initial posterior is used - these cases do not achieve
convergence.

The explanation for this lies in the fact that components of the cost are dependent on a sample drawn from the poste-
rior. In the case of a non-informative posterior samples of realistic sizes cannot be large enough to be representative
and different samples may contain widely varying contents. Such samples cannot reliably direct the optimisation to
minimise the cost function because the calculated cost (and its gradients) are dominated by random variation in the
values contained within the sample.

By contrast if the posterior is informative - even if it is far from the best solution - different moderately-size random
samples are all likely to provide a reasonable representation of that distribution. The optimisation will therefore be
directed to minimse the cost more reliably since it is less dependent on the particular values that happened to be
included in the sample.

We conclude that the initial posterior must be informative even if it is a long way from the true solution.

The _analytic and _num plots are identical apart from using the analytic or the numerical solution to the KL
divergence between two MVNs. The similarity between these results suggests that the numerical solution should be
sufficient in cases where the prior and posterior cannot be represented as two MVN distributions.

The _corr and __nocorr plots were generated with and without a full posterior covariance matrix. In this case we
see little difference between the two.

It is reassuring that the cost can converge under a wide variety of prior and posterior assumptions, however it is also
useful to consider the effect of these variables on speed of convergence. The results below illustrate this:

This plot shows the epoch at which each voxel converged (to with 5% of its final values). The box plot show the median
and IQR, while the circles show slow-converging outliers. For the reasons given above, non-informative posterior test
cases were excluded from this plot.

3.6. Effect of prior and initial posterior 36

SVB Documentation, Release 0.0.1

It is clear that the main impact on convergence speed is the initial posterior. Where it is far from the true values
(i_wrong) convergence is slowest. However this problem is much less obvious when the priors are informative as in
this case the ‘wrong’ posterior values generate high latent cost as they are far from the ‘true’ prior values. This quickly
guides the optimisation to the correct solution. Initialisation of the posterior from the data (where there is a reasonable
method for doing this) is therefore recommended to improve convergence speed.

3.7 Numerical vs analytic evaluation of the KL divergence

In the results above we have used the analytic result for the KL divergence of two multivariate Gaussian distributions.
In general where the posterior is not constrained to this distribution we need to use a numerical evaluation which in-
volves the posterior sample. So it is useful to assess the effect of forcing the numerical method in this case, particularly
in combination with variation in the sample size.

3.7. Numerical vs analytic evaluation of the KL divergence 37

SVB Documentation, Release 0.0.1

The absolute values of the free energy cannot be compared directly since some constant terms in the analytic solution
are dropped from the calculation. The convergence properties with sample size, however, are closely similar even
though part of the cost is independent of sample size in the analytic case.

We can also compare parameter convergence with sample size:

3.7. Numerical vs analytic evaluation of the KL divergence 38

SVB Documentation, Release 0.0.1

3.7. Numerical vs analytic evaluation of the KL divergence 39

SVB Documentation, Release 0.0.1

3.7. Numerical vs analytic evaluation of the KL divergence 40

SVB Documentation, Release 0.0.1

3.7. Numerical vs analytic evaluation of the KL divergence 41

SVB Documentation, Release 0.0.1

3.7. Numerical vs analytic evaluation of the KL divergence 42

SVB Documentation, Release 0.0.1

3.7. Numerical vs analytic evaluation of the KL divergence 43

SVB Documentation, Release 0.0.1

3.7. Numerical vs analytic evaluation of the KL divergence 44

SVB Documentation, Release 0.0.1

3.7. Numerical vs analytic evaluation of the KL divergence 45

SVB Documentation, Release 0.0.1

In most cases the numerical and analytic solutions seem very similar, however in the case of the rate parameter we do
not appear to get a converged result at NT=50 or 100 until we have a sample size of 100 when inferring covariance.
This requires additional investigation since it is out of step with the remainder of the results.

3.8 Inference of covariance

The effect of inferring covariance or not has been shown throughout these tests. In general the effect is that convergence
is more challenging with covariance as would be expected with the increased parameter space, and instabilities caused
by small batch or sample sizes, or large learning rates, are exacerbated by the inclusion of covariance. It’s worth
mentioning that the symmetry of the biexponential model would expect to generate significant parameter covariances.

A strategy of initially optimizing without covariance, and then restarting the optimization with the covariance param-
eters included is an obvious way to address this.

3.8. Inference of covariance 46

CHAPTER 4

Tests using Arterial Spin Labelling model

This model implements a basic resting-state ASL kinetic model for PASL and pCASL acquisitions. The model pa-
rameters are 𝑓𝑡𝑖𝑠𝑠, the relative perfusion and 𝛿𝑡 the transit time of the blood from the labelling plane to the voxel.

Time points are divided into two categories:

During bolus is defined as 𝛿𝑡 < 𝑡 <= 𝜏 + 𝛿𝑡

Post bolus is defined as 𝑡 > 𝜏 + 𝛿𝑡

Here 𝜏 is the bolus duration. The model output is zero for pre-bolus time points.

The following rate constant is defined:
1

𝑇1𝑎𝑝𝑝
= 1

(1/𝑇1+𝑓𝑐𝑎𝑙𝑖𝑏/𝜆)

𝜆 is the tissue/blood partition coefficient of water which we take to be 0.9. 𝑓𝑐𝑎𝑙𝑖𝑏 is the calibrated CBF which typically
we do not do not have access to (since we are inferring relative CBF) so we use a typical value of 0.01 𝑠−1.

4.1 CASL model

4.1.1 During bolus

𝑀(𝑡) = 2𝑓𝑡𝑖𝑠𝑠𝑇1𝑎𝑝𝑝 exp (−𝛿𝑡
𝑇1𝑏

)(1 − exp (− (𝑡−𝛿𝑡)
𝑇1𝑎𝑝𝑝

))

4.1.2 Post bolus

𝑀(𝑡) = 2𝑓𝑡𝑖𝑠𝑠𝑇1𝑎𝑝𝑝 exp (− 𝛿𝑡
𝑇1𝑏

) exp (− (𝑡−𝜏−𝛿𝑡)
𝑇1𝑎𝑝𝑝

)(1 − exp (− 𝜏
𝑇1𝑎𝑝𝑝

))

47

SVB Documentation, Release 0.0.1

4.2 PASL model

𝑟 = 1
𝑇1𝑎𝑝𝑝

− 1
𝑇1𝑏

𝑓 = 2 exp (− 𝑡
𝑇1𝑎𝑝𝑝

)

4.2.1 During bolus

𝑀(𝑡) = 𝑓𝑡𝑖𝑠𝑠
𝑓
𝑟 (exp (𝑟𝑡) − exp (𝑟𝛿𝑡))

4.2.2 Post bolus

𝑀(𝑡) = 𝑓𝑡𝑖𝑠𝑠
𝑓
𝑟 (exp (𝑟(𝛿𝑡 + 𝜏)) − exp (𝑟𝛿𝑡))

The time points in evaluating an ASL model are the 𝑇𝑖 values, which may be expressed as the sum of the bolus duration
𝜏 and a post-labelling delay time. For 2D acquisitions they may be further modified by the additional time delay in
acquiring each slice.

4.3 Test data

The test data used is a pCASL acquisition with 𝜏 = 1.8𝑠 and six post-labelling delays of 0.25, 0.5, 0.75, 1.0, 1.25 and
1.5s. The acquisition was 2D with an additional time delay of 0.0452s per slice. 8 repeats of the full set of PLDs was
obtained.

The test data was fitted in two ways. One method was to average over the repeats and fit the model to the repeat-free
data. The other is to fit the model to the whole data including repeats. Naturally this involves a larger data size and
hence a mini-batch approach to the optimization.

4.3.1 Mean data tests

For these tests we have only 6 time points and therefore we do not use a mini-batch approach, instead using a fixed
batch size of 6 (all data points).

Convergence by learning rate

The convergence of mean cost by learning rate is shown below:

images/conv_lr_asl.png

The pattern is closely similar to that obtained using a biexpoential model although the convergence here is generally
‘cleaner’. Learning rates between 0.05 and 0.1 attain the lowest cost within the given number of epochs, with 0.1
converging faster. Higher learning rates are less stable and do not appear to be likely to converge, while lower learning
rates converge slowly.

The best cost achieved in 500 epochs is shown below, reinforcing the optimum learning rate range 0.1 - 0.05

4.2. PASL model 48

SVB Documentation, Release 0.0.1

images/best_cost_lr_asl.png

4.3.2 Full data tests

For these tests we have 8 repeats of the 6 PLDs giving 48 data points. This raises the possibility of a mini-batch
approach. Intuitively the obvious choice of batch size is 6, arranged so that each optimization iteration considers one
repeat of all 6 PLDs. However we experiment with varying the batch size to see if there is any actual advantage in this
structure.

images/conv_lr_asl_rpts.png

images/best_cost_lr_asl_rpts.png

The patterns with convergence and batch size are very similar to those obtained from the biexponential model. In
particular there is no visible effect of aligning the batch size with the ASL repeats. Again we find a general optimum
learning rate of 0.1 - 0.05 associated with a batch size around 10, although it is noticable that the best cost achieved at
lower learning rates is a bit better with smaller batch sizes.

4.3. Test data 49

CHAPTER 5

Sample size inflation tests

These tests are designed to explore the idea of increasting the posterior sample size during the course of the fitting.
The theory is that we can start out with a small sample size which is very fast and will get us close to the optimal
cost, then the size is increased to get a more accurate sample from the posterior and refine the optimization to be more
accurate.

In principle this should be faster than simply using the larger sample size from the beginning and may also help to
avoid local minima by encouraging a ‘noisier’ initial optimization.

There are two key questions we need to answer when exploring this strategy:

• What combination of initial sample size, final sample size, and number of training epochs is required to ensure
we achieve convergence sufficiently close to the actual minimum cost for the data?

• For combinations which achieve within some given tolerance of this cost, which get there in the shortest time?

5.1 Tests using ASL data

These tests were performed using the multi-repeat ASL data described here. We compared initial sample sizes of 2, 4,
8, 16, 32 and 64 growing to final sample sizes of 2, 4, 8, 16, 32 and 64 over 100, 200 and 500 epochs respectively.

The following plots show the minimum cost achieved for each combination of initial and final sample size at each
number of epochs (the two plots show the same data but one is focused on comparing initial sample sizes for a given
final sample sizes and the other is focused on comparing final sample sizes for a given initial sample size):

50

SVB Documentation, Release 0.0.1

5.1. Tests using ASL data 51

SVB Documentation, Release 0.0.1

From these plots we can see that with only 100 training epochs we are not yet at absolute convergence even using the
maximum sample size throughout. For 200 epochs, we achieve close to the optimal cost when the final sample size is
64 or 32 and the initial sample size is at least 8.

The following plots show the time taken to reach within a given tolerance of the best free energy for combinations of
initial and final sample sizes. We only consider final sample sizes of 64 and 32 based on the previous results:

5.1. Tests using ASL data 52

SVB Documentation, Release 0.0.1

5.1. Tests using ASL data 53

SVB Documentation, Release 0.0.1

Here we see that starting with a smaller sample size is generally associated with faster overall convergence. For this
data we would recommend an initial sample size of 8 and a final sample size of 64.

5.1. Tests using ASL data 54

CHAPTER 6

Learning rate quenching tests

These tests are designed to explore the idea of decreasing the learning rate during the course of the fitting. The theory
is that we can start out with a high learning rate which rapidly converges close to the optimum, but then reduce it over
time to get as close as possible and avoid the problem of large steps overshooting the minumum.

In principle this should be faster than simply using the lower learning rate throughout since the initial move towards
the neighbourhood of the minimum should require fewer epochs. In addition if the initial learning rate is very low then
the optimization may fail to escape from local cost minima that exist close to the initial values.

There are two key questions we need to answer when exploring this strategy:

• What combination of initial learning rate, final learning rate, and number of training epochs is required to ensure
we achieve convergence sufficiently close to the actual minimum cost for the data?

• For combinations which achieve within some given tolerance of this cost, which get there in the shortest time?

6.1 Tests using ASL data

These tests were performed using the multi-repeat ASL data described here. We compared initial learning rates of 0.8,
0.4, 0.2, 0.1, 0.05, 0.025 and 0.0125 with reduction over the training cycle to final learning rates from the same set
(but only running examples where the final learning rate was less than the initial. The training cycle was performed
over 100, 200 and 500 epochs.

The following plot show the minimum cost achieved for each combination of initial and final learning rate at each
number of epochs (the two plots show the same data but one is focused on comparing initial learning rates for a given
final learning rates and the other is focused on comparing final learning rates for a given initial learning rate):

55

SVB Documentation, Release 0.0.1

6.1. Tests using ASL data 56

SVB Documentation, Release 0.0.1

From these plots we can see that with firstly the minimum cost is achieved only when the final learning rate is suf-
ficiently low - this confirms that a low learning rate is necessary to accurately home in on the minimum without
overshooting.

Furthermore, a better cost is achieved by starting at a higher learning rate - 0.2 to 0.1. This is the case even with 500
epochs of training. So the general strategy of starting out with rapid learning and quenching to a very low value seems
to be a good one.

It is noticeable that we obtain worse cost over 500 epochs than over 200 epochs when the initial learning rate is high.
It may be that maintaining a high learning rate for too many epochs leads the optimization far away from the optimum.
This is confirmed by the actual runtime free energy which starts out by reducing but rapidly begins to oscillate between
high and low values if the high learning rate is continued.

Best cost over 100 epochs was 77.9 (initial 0.2 -> final 0.0125). Over 200 epochs the best cost was 77.6 (same
combination) and over 500 epochs the best was 77.5 (initial 0.05 -> final 0.0125).

6.1. Tests using ASL data 57

SVB Documentation, Release 0.0.1

The following plots show the time taken to reach within a given tolerance of the best free energy for combinations of
initial and final learning rates. We only consider final learning rates of 0.1 or lower as previous plots show that we are
not close to convergence when then final learning rate is higher:

6.1. Tests using ASL data 58

SVB Documentation, Release 0.0.1

6.1. Tests using ASL data 59

SVB Documentation, Release 0.0.1

These plots show that starting with a high learning rate can indeed accelerate convergence provided it is quenched
rapidly. Slow quenching (e.g. from 0.2 to 0.1) seems to leave too many training epochs at the higher learning rate and
can reduce the convergence speed.

It’s worth noting that the computational time per epoch is largely independent of learning rate, so these measures
are essentially measures of how many epochs were needed for convergence (unlike with sample size inflation where
the training time increases as we increase the sample size). So slower convergence can be a result of too much time
initially at a low learning rate (where the optimizer slowly ‘inches’ its way towards the minimum) or alternatively too
much time initially at a high learning rate, where the optimizer repeatedly overshoots the minimum until the quenching
process lowers it sufficiently to converge.

For this data and appropriate combination seems to be 200 epochs starting at 0.2 and reducing by a factor of 16 to
0.0125. This gives a cost very close to the minimum and also optimizes the convergence rate measure.

6.1. Tests using ASL data 60

CHAPTER 7

Command line usage

Our implementation of Stochastic Variational Bayes includes a command line application designed to be similar to
Fabber (our implementation of analytic Variational Bayes). The command line program is simply named svb

7.1 Examples

To fit the ASL data given in the FSL course we would use the following command line:

svb --data=mpld_asltc.nii.gz --casl --plds=0.25,0.5,0.75,1.0,1.25,1.5 --slicedt=0.
→˓0452 \

--tau=1.8 --repeats=8 \
--mask=mpld_asltc_mask.nii.gz \
--model=aslrest \
--output=mpld_asltc_out

61

https://fabber_core.readthedocs.io/

CHAPTER 8

Python API

8.1 Model module

Base class for a forward model whose parameters are to be fitted

class svb.model.Model(data_model, **options)
A forward model

Attr params Sequence of Parameter objects

Attr nparams Number of model parameters

evaluate(params, tpts)
Evaluate the model

Parameters t – Time values to evaluate the model at, supplied as a tensor of shape [1x1xB] (if
time values at each voxel are identical) or [Vx1xB] otherwise.

:param params Sequence of parameter values arrays, one for each parameter. Each array is WxSx1
tensor where W is the number of parameter vertices and S is the number of samples per parameter.
This may be supplied as a PxVxSx1 tensor where P is the number of parameters.

Returns [VxSxB] tensor containing model output at the specified time values for each voxel,
and each sample (set of parameter values).

ievaluate(params, tpts)
Evaluate the model outside of a TensorFlow session

Same as evaluate() but will run the evaluation within a session and return the evaluated output tensor

log_config(log=None)
Write model configuration to a log stream

Param log Optional logger to use - defaults to class instance logger

nparams
Number of parameters in the model

62

SVB Documentation, Release 0.0.1

param_idx(name)

Returns the index of a named parameter

test_data(tpts, params_map)
Generate test data by evaluating the model on known parameter values with optional added noise

FIXME this is non-functional at present.

Parameters

• tpts – 1xN or MxN tensor of time values (possibly varying by voxel)

• params_map – Mapping from parameter name either a single parameter value or a se-
quence of M parameter values. The special key noise_sd, if present, should containing
the standard deviation of Gaussian noise to add to the output.

:return If noise is present, a tuple of two MxN Numpy arrays. The first contains the ‘clean’ output
data without noise, the second contains the noisy data. If noise is not present, only a single array
is returned.

tpts()
Get the full set of timeseries time values

Parameters

• n_tpts – Number of time points required for the data to be fitted

• shape – Shape of source data which may affect the times assigned

By default this is a linear space using the attributes t0 and dt. Some models may have time values fixed
by some other configuration. If the number of time points is fixed by the model it must match the supplied
value n_tpts.

Returns Either a Numpy array of shape [n_tpts] or a Numpy array of shape shape + [n_tpts] for
voxelwise timepoints

svb.model.get_model_class(model_name)
Get a model class by name

8.2 Parameter module

SVB - Model parameters

This module defines a set of classes of model parameters.

The factory methods which create priors/posteriors can make use of the instance class to create the appropriate type of
vertexwise prior/posterior

class svb.parameter.Parameter(name, **kwargs)
A standard model parameter

svb.parameter.get_parameter(name, **kwargs)
Factory method to create an instance of a parameter

8.3 Posterior module

Definition of the posterior distribution

8.2. Parameter module 63

SVB Documentation, Release 0.0.1

class svb.posterior.FactorisedPosterior(posts, **kwargs)
Posterior distribution for a set of parameters with no covariance

entropy(_samples=None)

Parameters samples – A tensor of shape [W, P, S] where W is the number of parameter
vertices, P is the number of parameters in the prior (possibly 1) and S is the number of
samples. This parameter may or may not be used in the calculation. If it is required, the
implementation class must check that it is provided

:return Tensor of shape [W] containing vertexwise distribution entropy

latent_loss(prior)
Analytic expression for latent loss which can be used when posterior and prior are Gaussian

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback%E2%80%93Leibler_
divergence

Parameters prior – Vertexwise Prior instance which defines the mean and cov vertices at-
tributes

log_det_cov()
Determinant of diagonal matrix is product of diagonal entries

sample(nsamples)

Parameters nsamples – Number of samples to return per parameter vertex / parameter

Returns A tensor of shape [W, P, S] where W is the number of parameter vertices, P is the
number of parameters in the distribution (possibly 1) and S is the number of samples

set_state(state)

Parameters state – State of variables in this posterior, as returned by previous call to state()

:return Sequence of tf.Operation objects containing which will set the variables in this posterior to
the specified state

state()
:return Sequence of tf.Tensor objects containing the state of all variables in this posterior. The tensors
returned will be evaluated to create a savable state which may then be passed back into set_state()

class svb.posterior.GaussianGlobalPosterior(idx, mean, var, **kwargs)
Posterior which has the same value at every parameter vertex

entropy(_samples=None)

Parameters samples – A tensor of shape [W, P, S] where W is the number of parameter
vertices, P is the number of parameters in the prior (possibly 1) and S is the number of
samples. This parameter may or may not be used in the calculation. If it is required, the
implementation class must check that it is provided

:return Tensor of shape [W] containing vertexwise distribution entropy

sample(nsamples)
FIXME should each parameter vertex get the same sample? Currently YES

set_state(state)

Parameters state – State of variables in this posterior, as returned by previous call to state()

:return Sequence of tf.Operation objects containing which will set the variables in this posterior to
the specified state

8.3. Posterior module 64

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback%E2%80%93Leibler_divergence

SVB Documentation, Release 0.0.1

state()
:return Sequence of tf.Tensor objects containing the state of all variables in this posterior. The tensors
returned will be evaluated to create a savable state which may then be passed back into set_state()

class svb.posterior.MVNPosterior(posts, **kwargs)
Multivariate Normal posterior distribution

entropy(_samples=None)

Parameters samples – A tensor of shape [W, P, S] where W is the number of parameter
vertices, P is the number of parameters in the prior (possibly 1) and S is the number of
samples. This parameter may or may not be used in the calculation. If it is required, the
implementation class must check that it is provided

:return Tensor of shape [W] containing vertexwise distribution entropy

log_det_cov()
Determinant of a matrix can be calculated from the Cholesky decomposition which may be faster and more
stable than tf.matrix_determinant

sample(nsamples)

Parameters nsamples – Number of samples to return per parameter vertex / parameter

Returns A tensor of shape [W, P, S] where W is the number of parameter vertices, P is the
number of parameters in the distribution (possibly 1) and S is the number of samples

set_state(state)

Parameters state – State of variables in this posterior, as returned by previous call to state()

:return Sequence of tf.Operation objects containing which will set the variables in this posterior to
the specified state

state()
:return Sequence of tf.Tensor objects containing the state of all variables in this posterior. The tensors
returned will be evaluated to create a savable state which may then be passed back into set_state()

class svb.posterior.NormalPosterior(idx, mean, var, **kwargs)
Posterior distribution for a single vertexwise parameter with a normal distribution

entropy(_samples=None)

Parameters samples – A tensor of shape [W, P, S] where W is the number of parameter
vertices, P is the number of parameters in the prior (possibly 1) and S is the number of
samples. This parameter may or may not be used in the calculation. If it is required, the
implementation class must check that it is provided

:return Tensor of shape [W] containing vertexwise distribution entropy

sample(nsamples)

Parameters nsamples – Number of samples to return per parameter vertex / parameter

Returns A tensor of shape [W, P, S] where W is the number of parameter vertices, P is the
number of parameters in the distribution (possibly 1) and S is the number of samples

set_state(state)

Parameters state – State of variables in this posterior, as returned by previous call to state()

:return Sequence of tf.Operation objects containing which will set the variables in this posterior to
the specified state

8.3. Posterior module 65

SVB Documentation, Release 0.0.1

state()
:return Sequence of tf.Tensor objects containing the state of all variables in this posterior. The tensors
returned will be evaluated to create a savable state which may then be passed back into set_state()

class svb.posterior.Posterior(idx, **kwargs)
Posterior distribution

entropy(samples=None)

Parameters samples – A tensor of shape [W, P, S] where W is the number of parameter
vertices, P is the number of parameters in the prior (possibly 1) and S is the number of
samples. This parameter may or may not be used in the calculation. If it is required, the
implementation class must check that it is provided

:return Tensor of shape [W] containing vertexwise distribution entropy

sample(nsamples)

Parameters nsamples – Number of samples to return per parameter vertex / parameter

Returns A tensor of shape [W, P, S] where W is the number of parameter vertices, P is the
number of parameters in the distribution (possibly 1) and S is the number of samples

set_state(state)

Parameters state – State of variables in this posterior, as returned by previous call to state()

:return Sequence of tf.Operation objects containing which will set the variables in this posterior to
the specified state

state()

:return Sequence of tf.Tensor objects containing the state of all variables in this posterior. The ten-
sors returned will be evaluated to create a savable state which may then be passed back into set_state()

svb.posterior.get_posterior(idx, param, t, data_model, **kwargs)
Factory method to return a posterior

Parameters param – svb.parameter.Parameter instance

:

8.4 Prior module

Definition of prior distribution

class svb.prior.ARDPrior(nvertices, mean, var, **kwargs)
Automatic Relevance Determination prior

class svb.prior.ConstantMRFSpatialPrior(nvertices, mean, var, idx=None, nn=None,
n2=None, **kwargs)

Prior which performs adaptive spatial regularization based on the contents of neighbouring vertices using the
Markov Random Field method

This is equivalent to the Fabber ‘M’ type spatial prior

class svb.prior.FabberMRFSpatialPrior(nvertices, mean, var, idx=None, post=None,
nn=None, n2=None, **kwargs)

Prior designed to mimic the ‘M’ type spatial prior in Fabber.

Note that this uses update equations for ak which is not in the spirit of the stochastic method. ‘Native’ SVB
MRF spatial priors are also defined which simply treat the spatial precision parameter as an inference variable.

8.4. Prior module 66

SVB Documentation, Release 0.0.1

This code has been verified to generate the same ak estimate given the same input as Fabber, however in practice
it does not optimize to the same value. We don’t yet know why.

class svb.prior.FactorisedPrior(priors, **kwargs)
Prior for a collection of parameters where there is no prior covariance

In this case the mean log PDF can be summed from the contributions of each parameter

log_det_cov()
Determinant of diagonal matrix is product of diagonal entries

mean_log_pdf(samples)

Parameters samples – A tensor of shape [W, P, S] where W is the number of parameter
vertices, P is the number of parameters in the prior (possibly 1) and S is the number of
samples

Returns A tensor of shape [W] where W is the number of parameter vertices containing the
mean log PDF of the parameter samples provided

class svb.prior.MRF2SpatialPrior(nvertices, mean, var, idx=None, post=None, nn=None,
n2=None, **kwargs)

Prior which performs adaptive spatial regularization based on the contents of neighbouring vertices using the
Markov Random Field method

This uses the same formalism as the Fabber ‘M’ type spatial prior but treats the ak as a parameter of the op-
timization. It differs from MRFSpatialPrior by using the PDF formulation of the PDF rather than the matrix
formulation (the two are equivalent but currently we keep both around for checking that they really are!)

FIXME currently this does not work unless sample size=1

mean_log_pdf(samples)

Parameters samples – A tensor of shape [W, P, S] where W is the number of parameter
vertices, P is the number of parameters in the prior (possibly 1) and S is the number of
samples

Returns A tensor of shape [W] where W is the number of parameter vertices containing the
mean log PDF of the parameter samples provided

class svb.prior.MRFSpatialPrior(nvertices, mean, var, idx=None, post=None, nn=None,
n2=None, **kwargs)

Prior which performs adaptive spatial regularization based on the contents of neighbouring vertices using the
Markov Random Field method

This uses the same formalism as the Fabber ‘M’ type spatial prior but treats the ak as a parameter of the opti-
mization.

mean_log_pdf(samples)
mean log PDF for the MRF spatial prior.

This is calculating:

log𝑃 = 1
2 log 𝜑− 𝜑

2𝑥
𝑇𝐷𝑥

class svb.prior.NormalPrior(nvertices, mean, var, **kwargs)
Prior based on a vertexwise univariate normal distribution

mean_log_pdf(samples)
Mean log PDF for normal distribution

Note that term1 is a constant offset when the prior variance is fixed and hence in earlier versions of the
code this was neglected, along with other constant offsets such as factors of pi. However when this code
is inherited by spatial priors and ARD the variance is no longer fixed and this term must be included.

8.4. Prior module 67

SVB Documentation, Release 0.0.1

class svb.prior.Prior(**kwargs)
Base class for a prior, defining methods that must be implemented

mean_log_pdf(samples)

Parameters samples – A tensor of shape [W, P, S] where W is the number of parameter
vertices, P is the number of parameters in the prior (possibly 1) and S is the number of
samples

Returns A tensor of shape [W] where W is the number of parameter vertices containing the
mean log PDF of the parameter samples provided

svb.prior.get_prior(param, data_model, **kwargs)
Factory method to return a vertexwise prior

8.5 SVB module

Stochastic Bayesian inference of a nonlinear model

Infers:

• Posterior mean values of model parameters

• A posterior covariance matrix (which may be diagonal or a full positive-definite matrix)

The general order for tensor dimensions is:

• Voxel indexing (V=number of voxels / W=number of parameter vertices)

• Parameter indexing (P=number of parameters)

• Sample indexing (S=number of samples)

• Data point indexing (B=batch size, i.e. number of time points being trained on, in some cases T=total
number of time points in full data)

This ordering is chosen to allow the use of TensorFlow batch matrix operations. However it is inconvenient for the
model which would like to be able to index input by parameter. For this reason we transpose when calling the model’s
evaluate function to put the P dimension first.

The parameter vertices, W, are the set of points on which parameters are defined and will be output. They may be
voxel centres, or surface element vertices. The data voxels, V, on the other hand are the points on which the data to be
fitted to is defined. Typically this will be volumetric voxels as that is what most imaging experiments output as raw
data.

In many cases, W will be the same as V since we are inferring volumetric parameter maps from volumetric data.
However we might alternatively want to infer surface based parameter maps but keep the comparison to the measured
volumetric data. In this case V and W will be different. The key point at which this difference is handled is the model
evaluation which takes parameters defined on W and outputs a prediction defined on V.

V and W are currently identical but may not be in the future. For example we may want to estimate parameters on a
surface (W=number of surface vertices) using data defined on a volume (V=number of voxels).

Ideas for per voxel/vertex convergence:

• Maintain vertex_mask as member. Initially all ones

• Mask vertices when generating samples and evaluating model. The latent cost will be over unmasked vertices
only.

• PROBLEM: need reconstruction cost defined over full voxel set hence need to project model evaluation onto all
voxels. So masked vertices still need to keep their previous model evaluation output

8.5. SVB module 68

SVB Documentation, Release 0.0.1

• Define criteria for masking vertices after each epoch

• PROBLEM: spatial interactions make per-voxel convergence difficult. Maybe only do full set convergence in
this case (like Fabber)

class svb.svb.SvbFit(data_model, fwd_model, **kwargs)
Stochastic Bayesian model fitting

Variables

• model – Model instance to be fitted to some data

• prior – svb.prior.Prior instance defining the prior parameter distribution

• post – svb.posterior.Posterior instance defining the posterior parameter distribution

• params – Sequence of Parameter instances of parameters to infer. This includes the model
parameters and the noise parameter(s)

evaluate(*tensors)
Evaluate tensor values

Parameters tensors – Sequence of tensors or names of tensors

Returns If single tensor requested, it’s value as Numpy array. Otherwise tuple of Numpy arrays

fit_batch()
Train model based on mini-batch of input data.

Returns Tuple of total cost of mini-batch, latent cost and reconstruction cost

set_state(state)
Set the state of the optimization

Parameters state – State as returned by the state() method

state()
Get the current state of the optimization.

This can be used to restart from a previous state if a numerical error occurs

train(tpts, data, batch_size=None, sequential_batches=False, epochs=100, fit_only_epochs=0,
display_step=1, learning_rate=0.1, lr_decay_rate=1.0, sample_size=None,
ss_increase_factor=1.0, revert_post_trials=50, revert_post_final=True, **kwargs)

Train the graph to infer the posterior distribution given timeseries data

Parameters

• tpts – Time series values. Should have shape [T] or [V, T] depending on whether time-
series is constant or varies voxelwise

• data – Full timeseries data, shape [V, T]

Optional arguments:

Parameters

• batch_size – Batch size to use when training model. Need not be a factor of T, however
if not batches will not all be the same size. If not specified, data size is used (i.e. no mini-
batch optimization)

• sequential_batches – If True, form batches from consecutive time points rather
than strides

• epochs – Number of training epochs

8.5. SVB module 69

SVB Documentation, Release 0.0.1

• fit_only_epochs – If specified, this number of epochs will be restricted to fitting
only and ignore prior information. In practice this means only the reconstruction loss is
considered not the latent cost

• display_step – How many steps to execute for each display line

• learning_rate – Initial learning rate

• lr_decay_rate – When adjusting the learning rate, the factor to reduce it by

• sample_size – Number of samples to use when estimating expectations over the pos-
terior

• ss_increase_factor – Factor to increase the sample size by over the epochs

• revert_post_trials – How many epoch to continue for without an improvement in
the mean cost before reverting the posterior to the previous best parameters

• revert_post_final – If True, revert to the state giving the best cost achieved after
the final epoch

8.6 Utils module

General utility functions

class svb.utils.LogBase(**kwargs)
Base class that provides a named log and the ability to log tensors easily

log_tf(tensor, level=10, **kwargs)
Log a tensor

Parameters

• tensor – tf.Tensor

• level – Logging level (default: DEBUG)

Keyword arguments:

Parameters

• summarize – Number of entries to include (default 100)

• force – If True, always log this tensor regardless of log level

• shape – If True, precede tensor with its shape

svb.utils.ValueList(value_type)
Class used with argparse for options which can be given as a comma separated list

Stochastic Bayesian inference of a nonlinear model

Infers:

• Posterior mean values of model parameters

• A posterior covariance matrix (which may be diagonal or a full positive-definite matrix)

The general order for tensor dimensions is:

• Voxel indexing (V=number of voxels / W=number of parameter vertices)

• Parameter indexing (P=number of parameters)

• Sample indexing (S=number of samples)

8.6. Utils module 70

SVB Documentation, Release 0.0.1

• Data point indexing (B=batch size, i.e. number of time points being trained on, in some cases T=total
number of time points in full data)

This ordering is chosen to allow the use of TensorFlow batch matrix operations. However it is inconvenient for the
model which would like to be able to index input by parameter. For this reason we transpose when calling the model’s
evaluate function to put the P dimension first.

The parameter vertices, W, are the set of points on which parameters are defined and will be output. They may be
voxel centres, or surface element vertices. The data voxels, V, on the other hand are the points on which the data to be
fitted to is defined. Typically this will be volumetric voxels as that is what most imaging experiments output as raw
data.

In many cases, W will be the same as V since we are inferring volumetric parameter maps from volumetric data.
However we might alternatively want to infer surface based parameter maps but keep the comparison to the measured
volumetric data. In this case V and W will be different. The key point at which this difference is handled is the model
evaluation which takes parameters defined on W and outputs a prediction defined on V.

V and W are currently identical but may not be in the future. For example we may want to estimate parameters on a
surface (W=number of surface vertices) using data defined on a volume (V=number of voxels).

Ideas for per voxel/vertex convergence:

• Maintain vertex_mask as member. Initially all ones

• Mask vertices when generating samples and evaluating model. The latent cost will be over unmasked vertices
only.

• PROBLEM: need reconstruction cost defined over full voxel set hence need to project model evaluation onto all
voxels. So masked vertices still need to keep their previous model evaluation output

• Define criteria for masking vertices after each epoch

• PROBLEM: spatial interactions make per-voxel convergence difficult. Maybe only do full set convergence in
this case (like Fabber)

8.7 Indices and tables

• genindex

• modindex

• search

8.7. Indices and tables 71

Python Module Index

s
svb.model, 62
svb.parameter, 63
svb.posterior, 63
svb.prior, 66
svb.svb, 68
svb.utils, 70

72

Index

A
ARDPrior (class in svb.prior), 66

C
ConstantMRFSpatialPrior (class in svb.prior), 66

E
entropy() (svb.posterior.FactorisedPosterior method),

64
entropy() (svb.posterior.GaussianGlobalPosterior

method), 64
entropy() (svb.posterior.MVNPosterior method), 65
entropy() (svb.posterior.NormalPosterior method), 65
entropy() (svb.posterior.Posterior method), 66
evaluate() (svb.model.Model method), 62
evaluate() (svb.svb.SvbFit method), 69

F
FabberMRFSpatialPrior (class in svb.prior), 66
FactorisedPosterior (class in svb.posterior), 63
FactorisedPrior (class in svb.prior), 67
fit_batch() (svb.svb.SvbFit method), 69

G
GaussianGlobalPosterior (class in

svb.posterior), 64
get_model_class() (in module svb.model), 63
get_parameter() (in module svb.parameter), 63
get_posterior() (in module svb.posterior), 66
get_prior() (in module svb.prior), 68

I
ievaluate() (svb.model.Model method), 62

L
latent_loss() (svb.posterior.FactorisedPosterior

method), 64
log_config() (svb.model.Model method), 62

log_det_cov() (svb.posterior.FactorisedPosterior
method), 64

log_det_cov() (svb.posterior.MVNPosterior
method), 65

log_det_cov() (svb.prior.FactorisedPrior method),
67

log_tf() (svb.utils.LogBase method), 70
LogBase (class in svb.utils), 70

M
mean_log_pdf() (svb.prior.FactorisedPrior method),

67
mean_log_pdf() (svb.prior.MRF2SpatialPrior

method), 67
mean_log_pdf() (svb.prior.MRFSpatialPrior

method), 67
mean_log_pdf() (svb.prior.NormalPrior method), 67
mean_log_pdf() (svb.prior.Prior method), 68
Model (class in svb.model), 62
MRF2SpatialPrior (class in svb.prior), 67
MRFSpatialPrior (class in svb.prior), 67
MVNPosterior (class in svb.posterior), 65

N
NormalPosterior (class in svb.posterior), 65
NormalPrior (class in svb.prior), 67
nparams (svb.model.Model attribute), 62

P
param_idx() (svb.model.Model method), 62
Parameter (class in svb.parameter), 63
Posterior (class in svb.posterior), 66
Prior (class in svb.prior), 67

S
sample() (svb.posterior.FactorisedPosterior method),

64
sample() (svb.posterior.GaussianGlobalPosterior

method), 64

73

SVB Documentation, Release 0.0.1

sample() (svb.posterior.MVNPosterior method), 65
sample() (svb.posterior.NormalPosterior method), 65
sample() (svb.posterior.Posterior method), 66
set_state() (svb.posterior.FactorisedPosterior

method), 64
set_state() (svb.posterior.GaussianGlobalPosterior

method), 64
set_state() (svb.posterior.MVNPosterior method),

65
set_state() (svb.posterior.NormalPosterior method),

65
set_state() (svb.posterior.Posterior method), 66
set_state() (svb.svb.SvbFit method), 69
state() (svb.posterior.FactorisedPosterior method), 64
state() (svb.posterior.GaussianGlobalPosterior

method), 64
state() (svb.posterior.MVNPosterior method), 65
state() (svb.posterior.NormalPosterior method), 65
state() (svb.posterior.Posterior method), 66
state() (svb.svb.SvbFit method), 69
svb.model (module), 62
svb.parameter (module), 63
svb.posterior (module), 63
svb.prior (module), 66
svb.svb (module), 68, 70
svb.utils (module), 70
SvbFit (class in svb.svb), 69

T
test_data() (svb.model.Model method), 63
tpts() (svb.model.Model method), 63
train() (svb.svb.SvbFit method), 69

V
ValueList() (in module svb.utils), 70

Index 74

	Stochastic Variational Bayes - Theory
	Implementation of SVB
	Tests using Biexponential model
	Tests using Arterial Spin Labelling model
	Sample size inflation tests
	Learning rate quenching tests
	Command line usage
	Python API
	Python Module Index
	Index

